Finiteness and duality for the cohomology of prismatic crystals

نویسندگان

چکیده

Let $(A, I)$ be a bounded prism, and $X$ smooth $p$-adic formal scheme over $\Spf(A/I)$. We consider the notion of crystals on Bhatt--Scholze's prismatic site $(X/A)_{\prism}$ relative to $A$. prove that if is proper $\Spf(A/I)$ dimension $n$, then cohomology crystal perfect complex $A$-modules with tor-amplitude in degrees $[0,2n]$. also establish Poincar\'e duality for reduced crystals, i.e. structural sheaf $(X/A)_{\prism}$. The key ingredient an explicit local description terms Higgs modules.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

Finiteness of certain local cohomology modules

Cofiniteness of the generalized local cohomology modules $H^{i}_{mathfrak{a}}(M,N)$ of two $R$-modules $M$ and $N$ with respect to an ideal $mathfrak{a}$ is studied for some $i^{,}s$ witha specified property. Furthermore, Artinianness of $H^{j}_{mathfrak{b}_{0}}(H_{mathfrak{a}}^{i}(M,N))$ is investigated by using the above result, in certain graded situations, where $mathfrak{b}_{0}$ is an idea...

متن کامل

Finiteness and duality

Consider a ring K, a topological space X and a sheaf A on X of K[[~]]-algebras. Assuming that A is ~-complete and without ~torsion, we first show how to deduce a coherency theorem for complexes of A -modules from a corresponding property for complexes of A /~A -modules. We apply this result to prove that, under a natural properness condition, the convolution of two coherent kernels over deforma...

متن کامل

upper bounds for finiteness of generalized local cohomology modules

let $r$ be a commutative noetherian ring with non-zero identity and $fa$ an ideal of $r$. let $m$ be a finite $r$--module of finite projective dimension and $n$ an arbitrary finite $r$--module. we characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(m,n)$ in certain serre subcategories of the category of modules from upper bounds. we define and study the properti...

متن کامل

FINITENESS PROPERTIES OF LOCALE COHOMOLOGY MODULES FOR (I;J)- MINIMAX MODULES

ABSTRACT. Let R be a commutative noetherian ring, I and J are two ideals of R. Inthis paper we introduce the concept of (I;J)- minimax R- module, and it is shown thatif M is an (I;J)- minimax R- module and t a non-negative integer such that HiI;J(M) is(I;J)- minimax for all i

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Crelle's Journal

سال: 2023

ISSN: ['1435-5345', '0075-4102']

DOI: https://doi.org/10.1515/crelle-2023-0032