Finiteness and duality for the cohomology of prismatic crystals
نویسندگان
چکیده
Let $(A, I)$ be a bounded prism, and $X$ smooth $p$-adic formal scheme over $\Spf(A/I)$. We consider the notion of crystals on Bhatt--Scholze's prismatic site $(X/A)_{\prism}$ relative to $A$. prove that if is proper $\Spf(A/I)$ dimension $n$, then cohomology crystal perfect complex $A$-modules with tor-amplitude in degrees $[0,2n]$. also establish Poincar\'e duality for reduced crystals, i.e. structural sheaf $(X/A)_{\prism}$. The key ingredient an explicit local description terms Higgs modules.
منابع مشابه
UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...
متن کاملFiniteness of certain local cohomology modules
Cofiniteness of the generalized local cohomology modules $H^{i}_{mathfrak{a}}(M,N)$ of two $R$-modules $M$ and $N$ with respect to an ideal $mathfrak{a}$ is studied for some $i^{,}s$ witha specified property. Furthermore, Artinianness of $H^{j}_{mathfrak{b}_{0}}(H_{mathfrak{a}}^{i}(M,N))$ is investigated by using the above result, in certain graded situations, where $mathfrak{b}_{0}$ is an idea...
متن کاملFiniteness and duality
Consider a ring K, a topological space X and a sheaf A on X of K[[~]]-algebras. Assuming that A is ~-complete and without ~torsion, we first show how to deduce a coherency theorem for complexes of A -modules from a corresponding property for complexes of A /~A -modules. We apply this result to prove that, under a natural properness condition, the convolution of two coherent kernels over deforma...
متن کاملupper bounds for finiteness of generalized local cohomology modules
let $r$ be a commutative noetherian ring with non-zero identity and $fa$ an ideal of $r$. let $m$ be a finite $r$--module of finite projective dimension and $n$ an arbitrary finite $r$--module. we characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(m,n)$ in certain serre subcategories of the category of modules from upper bounds. we define and study the properti...
متن کاملFINITENESS PROPERTIES OF LOCALE COHOMOLOGY MODULES FOR (I;J)- MINIMAX MODULES
ABSTRACT. Let R be a commutative noetherian ring, I and J are two ideals of R. Inthis paper we introduce the concept of (I;J)- minimax R- module, and it is shown thatif M is an (I;J)- minimax R- module and t a non-negative integer such that HiI;J(M) is(I;J)- minimax for all i
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Crelle's Journal
سال: 2023
ISSN: ['1435-5345', '0075-4102']
DOI: https://doi.org/10.1515/crelle-2023-0032